Quinolone Analogues 10: Synthesis of Antimalarial Quinolones Having Pyridyl Moiety in N1-Side Chain

Yoshihisa Kurasawa, ${ }^{\text {a }}$ Kiminari Yoshida, ${ }^{\text {a }}$ Naoki Yamazaki, ${ }^{\text {a }}$ Eisuke Kaji, ${ }^{\text {b }}$ Kenji Sasaki, ${ }^{\text {c }}$ * Yoshiko Hiwasa, ${ }^{\text {c }}$ Akiko Tsukamoto, ${ }^{\text {c }}$ and Hideyuki Ito ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Pharmacy, Iwaki Meisei University, Iwaki-shi, Fukushima 970-8551, Japan
${ }^{\mathrm{b}}$ School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan ${ }^{\mathrm{c}}$ Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama-shi, Okayama 700-8530, Japan
*E-mail: kura77@iwakimu.ac.jp or ksasaki@pheasant.pharm.okayama-u.ac.jp Received July 7, 2009 DOI 10.1002/jhet. 297
Published online 3 May 2010 in Wiley InterScience (www.interscience.wiley.com).

Novel 4-quinolone-3-carboxylates $\mathbf{6 , 7}$ and 4-quinolone-3-carboxylic acids $\mathbf{8 - 1 1}$ were synthesized from 4-hydroxyquinoline-3-carboxylates. Ethyl 1-[1-ethoxycarbonyl-2-(4-pyridyl)vinyl]-6-fluoro-4-oxo-quinoline-3-carboxylate $7 \mathbf{a}$ was found to show antimalarial activity from the screening data.
J. Heterocyclic Chem., 47, 657 (2010).

INTRODUCTION

In previous articles [1-9], we reported the synthesis of the 1-alkyl-4-oxopyridazino[3,4-b]quinoxalines $\mathbf{1}$ (Chart 1) as candidates of antibacterial quinolone analogues, in which the 3-H [5], 3-methyl [3], 3-trifluoromethyl [4], and 3-bromo [6] derivatives showed good antibacterial, antifungal, and/or algicidal activities. To search for novel compounds with biological activities, we converted the target ring system from the 4 -oxopyri-dazino[3,4-b]quinoxaline to the 4-quinolone nucleus, which was included in the excellent antibacterial agents such as new quinolones. A novel type of new quinolones is still developed nowadays as an antibacterial agents. On the other hand, Wentland et al. [10] reported the antiherpetic activity of the 7-(4-pyridyl)-4-quino-lone-3-carboxamide 2 derived from its parent 3-carboxylic acid 3 (Chart 1).

Since quinolone antibacterials have been known to act on the DNA gyrase, some other biological activities such as antifungal and antiviral [10] activities are expected for quinolone analogues. In fact, some of our 1-methyl-4-oxopyridazino[3,4-b]quinoxalines $\mathbf{1}\left(\mathrm{R}^{1}=\right.$ $\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{Br}$) exhibited antifungal activities in addition to antibacterial activities [9]. In this investigation, we undertook the structural transformation of ordinary new quinolones $\mathbf{4}$ into compounds

6-11 as shown in Scheme 1. Namely, the C7-basic moiety is shifted to the N 1 -side chain leading to compound 5, and the linker part is inserted between the N1 and the basic moiety. Furthermore, a carboxyl group was introduced in the linker part to provide a proximal pair of the acid and base moieties. This article describes the synthesis of compounds $\mathbf{6}-\mathbf{1 1}$, some of which are found to exhibit antimalarial activity from the screening data.

RESULTS AND DISCUSSION

Synthesis of compounds 6-11. The reaction of ethyl 7-chloro-6-fluoro-4-hydroxyquinoline-3-carboxylate $\mathbf{1 2}$ [11,12] with methyl bromoacetate or ethyl 6-fluoro-4-hydroxyquinoline-3-carboxylate $\mathbf{1 3}$ [11,12] with ethyl

Chart 1

Scheme 1

5

6a,b: $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
7a-c: $X=H ; R^{1}=R^{2}=C_{2} H_{5}$
8a,b: $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
9a-c: $X=H ; R^{1}=H ; R^{2}=C_{2} H_{5}$
10a,b: $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
11a-c: $X=H ; R^{1}=R^{2}=H$
a: 4-Pyridyl; b: 3-Pyridyl; c: 2-Pyridyl

Table 1
In vitro antimalarial activity for compounds 7, 9, and $\mathbf{1 1}$.

	Plasmodium falciparum, Compound $\mathrm{IC}_{50}(\mu \mathrm{~mol})$	Mouse FM3A Cell, ${ }^{\text {a }} \mathrm{IC}_{50}$ $(\mu \mathrm{~mol})$	Chemotherapeutic coefficient
7a	8.2	>24	>2.9
7b	26	100	3.8
9b	29	>100	>3.4
9c	21	>100	>4.8
11b	24	>100	>4.2
11c	21	>100	>4.8

${ }^{\text {a }}$ Mouse breast cancer cell, F28-7 strain.
bromoacetate gave the methyl (7-chloro-6-fluoro-4-qui-nolon-1-yl)acetate $\mathbf{1 4}$ or ethyl (6-fluoro-4-quinolon-1-yl)acetate $\mathbf{1 5}$, respectively (Scheme 2). The reaction of compound 14 with 4- and 3-pyridinecarbaldehydes or the reaction of compound 15 with 4-, 3-, and 2-pyridinecarbaldehydes afforded the methyl 2-(7-chloro-6-fluoro-quinolon-1-yl)-3-(4- and 3-pyridyl)acrylates 6a,b or ethyl 2-(6-fluoroquinolon-1-yl)-3-(4-, 3-, and 2-pyridy1)acrylates 7a-c, respectively. Reflux of compounds $\mathbf{6 a}, \mathbf{b}$ in sulfuric acid/acetic acid/water was clarified to hydrolyze the ethyl ester of quinolone nucleus from the analytical and spectral data, providing the quinolone-3-carboxylic acids 8a,b, respectively. Similar reaction of

Scheme 2

Reagents: i) $\mathrm{BrCH}_{2} \mathrm{COOR}, \mathrm{K}_{2} \mathrm{CO}_{3}$ in N, N-Dimethylformamide; ii) Pyridinecarbaldehyde, DBU in N, N Dimethylformamide; iii) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{COOH}$, then NaOH ; iv) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$ in EtOH , then HCl

6a,b: $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}=\mathrm{CH}_{3} ; 7 \mathbf{a - c}: \mathrm{X}=\mathrm{H} ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathbf{8 a}, \mathbf{b}: \mathrm{X}=\mathrm{Cl} ; \mathrm{R}=\mathrm{CH}_{3} ;$ 9a-c: $\mathrm{X}=\mathrm{H} ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$;
10a,b: $\mathrm{X}=\mathrm{Cl} ; 11 \mathbf{1 a - c}: \mathrm{X}=\mathrm{H} ; \mathbf{a}:$ 4-Pyridyl ; b: 3-Pyridyl; \mathbf{c} : 2-Pyridyl

$7 a$

Trial for modification of compound 7a. An attempt was unsuccessful to convert the ester group into carbohydrazide group to install an additional basic moiety in the N 1 -side chain of compound $7 \mathbf{7 a}$. As shown in Scheme 4, the reaction of compound 7 a with hydrazine hydrate resulted in the bond cleavage between the N1 and acrylate moiety.

Analytical and spectral data. The structural assignment of novel compounds $\mathbf{6 - 1 1}$ was based on the analytical and spectral data. Especially, the NOE spectral data among the vinyl, pyridyl, and quinolone 8 -H protons of compounds $\mathbf{7 a}-\mathbf{c}$ shown in Table 2 ascertained the presence of the pyridylacrylate moiety in the N1 of the quinolone nucleus. Moreover, the NOE between the vinyl and quinolone $8-\mathrm{H}$ proton signals suggested the E isomer for compounds 6-11 and 16-18, whereas the NOE between the pyridine $3-\mathrm{H}$ and quinolone $2-\mathrm{H}$ proton signals supported the presence of the Z-isomer for compounds 7a and 9a (Table 2). There was no difference in the proton chemical shifts between the E - and Z-isomers in compounds 7a and 9 a .

In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compounds $\mathbf{6 b}, \mathbf{8 a}, \mathbf{1 1 a}$, and 17, two kinds of quinolone $2-\mathrm{H}$ proton signals were observed [14] (Table 3), which would not be due to the presence of the E - and Z-isomers, because compounds $7 \mathbf{a}$ and 9 a existing as the E - and Z-isomers in solution exhibited a single quinolone $2-\mathrm{H}$ proton signal.

Table 2
NOE data for compounds 7, 9, 11, and 16-18.

Radiation	NOE	$\mathbf{7 a}$	$\mathbf{7 b}$	$\mathbf{7 c}$	$\mathbf{9 a}$	$\mathbf{9 b}$	$\mathbf{9 c}$	$\mathbf{1 1 b}$	$\mathbf{1 6}$	$\mathbf{1 7}$
Vinyl H	Quinolone 8-H	1.2^{a}	1.4	1.0	1.6	-	-	-	1.0	1.5
	Quinolone 2-H	-	2.7	0.6	-	-	-	-	-	-
	Pyridyl 4-H	-	2.8	-	-	2.7	-	3.8	-	-
	Pyridyl 3-H	8.8	-	6.1	10.9	-	12.0	-	-	-
	Pyridyl 2-H	-	8.1	-	-	13.7	-	7.7	-	-
	Furyl 3-H	-	-	-	-	-	-	-	3.9	-
	Thienyl 4-H	-	-	-	-	-	-	-	-	-
	Thienyl 3-H	-	-	-	-	-	-	-	-	6.5
Pyridyl 3-H	Thienyl 2-H	-	-	-	-	-	-	-	-	-
	Vinyl H	8.4	-	-	-	-	-	-	-	-
	Pyridyl 2-H	17.9	-	-	-	-	-	-	-	-
	Pyridyl 3-H	2.3	-	-	2.0	-	-	-	-	-

[^0]Table 3
Compounds showing two kinds of quinolone 2-H proton signals [14].

	Compound	R^{1}	R^{2}	R^{3}	X	Chemical Shift (δ)		
						Quinolone 2-H		Ratio
	6b	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	3-Pyridyl	Cl	8.66	8.60	40:60
N	8a	H	CH_{3}	4-Pyridyl	Cl	9.05	8.90	72: 28
	11a	H	H	4-Pyridyl	H	9.11	9.03	23:77
COOR^{2}	17	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	2-Thienyl	H	8.59	8.55	45:55

Moreover, two kinds of quinolone $2-\mathrm{H}, 8-\mathrm{H}$, vinyl, pyridine $5-\mathrm{H}$, and ethyl ester CH_{2} proton signals were observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{6 b}$, suggesting the presence of two kinds of isomers [14]. Further investigation to clarify the aforementioned phenomena is in progress, and the results will be reported elsewhere.

The ${ }^{13} \mathrm{C}$-NMR spectral data are shown in Table 4, which includes the respective carbon chemical shifts of the typical our quinolones $\mathbf{6 a}, \mathbf{7 a}, \mathbf{1 4}$, and $\mathbf{1 6}$ assigned by the dHSQC and gHMBC spectral data.

EXPERIMENTAL

All melting points were determined on a Yazawa micromelting point BY-2 apparatus and are uncorrected. The IR spectra (potassium bromide) were recorded with a JASCO FT/ IR-200 spectrometer. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\mathrm{dHSOC} / \mathrm{gHMBC}$ spectra were measured with a Varian XL-400 and Varian INOVA 600 spectrometers at 400 and 600 MHz , respectively. The chemical shifts are given in the δ scale. The mass spectra (ms) were determined with a JEOL JMS-01S spectrometer. Elemental analyses were performed on a Perkin-Elmer 240B instrument.
Compounds 12 and 13 were synthesized by a method reported in literatures [11,12], refluxing in diphenyl ether at 250°.
Methyl (7-chloro-3-ethoxycarbonyl-6-fluoro-1,4-dihydro-4-oxoquinolin-1-yl)acetate 14. A mixture of compound 12 $(5.0 \mathrm{~g}, 18.6 \mathrm{mmol})$, ethyl bromoacetate ($5.09 \mathrm{~g}, 33.5 \mathrm{mmol}$), potassium carbonate ($5.0 \mathrm{~g}, 36.2 \mathrm{mmol}$) in dry N, N-dimethylformamide (200 mL) was heated at $100-120^{\circ}$ with stirring for 2 h and filtrated while the mixture was hot. Evaporation of the solvent in vacuo gave colorless crystals, which were recrystallized from N, N-dimethylformamide/ethanol/water to afford colorless needles $\mathbf{1 4}(5.13 \mathrm{~g}, 81 \%)$; mp: 251-252 ${ }^{\circ}$; IR: v 1725 $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 341\left(\mathrm{M}^{+}\right), 343\left(\mathrm{M}^{+}+2\right)$; NMR (deuteriodimethyl sulfoxide): $8.73(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 8.02(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.22$ $\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClFNO}_{5}: \mathrm{C}, 52.72 ; \mathrm{H}$, 3.83; N, 4.10. Found: C, 52.45 ; H, 3.94; N, 4.36.

Ethyl (3-ethoxycarbonyl-6-fluoro-1,4-dihydro-4-oxoqui-nolin-1-yl)acetate 15. A mixture of compound $13(5.0 \mathrm{~g}, 21.3$ $\mathrm{mmol})$, ethyl bromoacetate ($5.33 \mathrm{~g}, 31.9 \mathrm{mmol}$), potassium
carbonate ($4.40 \mathrm{~g}, 31.9 \mathrm{mmol}$) in dry N, N-dimethylformamide $(200 \mathrm{~mL})$ was heated at $100-120^{\circ}$ with stirring for 2 h and filtrated while the mixture was hot. Then, ethanol (100 mL) was added to the filtrate with stirring, and the solution was allowed to stand at room temperature to precipitate colorless needles 15, which were collected by suction and then washed with n hexane ($5.97 \mathrm{~g}, 87 \%$); mp: 274-275 ; IR: v $1740,1720 \mathrm{~cm}^{-1}$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} 321\left(\mathrm{M}^{+}\right)$; NMR (deuteriotrifluoroacetic acid): 9.14 (s, 1H, 2-H), 8.11 (dd, $J=7.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.82$ (dd, J $=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.75$ (ddd, $J=10.0,7.5,2.8 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 5.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.42\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.16\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.08\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClFNO}_{5}$: C, 59.81 ; H, 5.02; N, 4.36. Found: C, 59.64; H, 5.09; N, 4.59.

Table 4
${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data for compounds $\mathbf{6 a}, 7 \mathbf{a}, \mathbf{1 4}$, and 16.

	Compounds			
Carbon	$\mathbf{1 4}$	\mathbf{c} 6a	7a	$\mathbf{1 6}$
	151.1	149.0	148.5	149.4
2-C	110.5	112.4	111.9	111.3
3-C	171.7	171.8	172.4	172.5
4-C=O	128.2	127.9	129.2	129.2
4a-C	112.6	113.1	111.4	111.1
5-C	154.6	155.0	159.8	159.5
6-C	125.8	126.5	122.0	121.6
7-C	120.3	119.9	120.2	120.2
8-C	136.9	136.1	135.7	136.5
8a-C	53.5	-	-	-
1N-Methylene	164.2	163.8	164.0	164.3
3-Ester C=O	168.4	162.9	162.5	163.0
Other Ester C=O	-	130.3	130.9	123.0
Vinyl 1-C	-	140.0	139.1	128.0
Vinyl 2-C	-	150.9	150.9	-
Pyridyl 2,6-C	-	123.5	123.4	-
Pyridyl 3,5-C	-	138.0	138.0	-
Pyridyl 4-C	-	-	-	147.2
Furyl 2-C	-	-	-	121.8
Furyl 3-C	-	-	-	113.5
Furyl 4-C	-	-	-	149.0
Furyl 5-C	14.3	14.4	14.1	14.2
CH	53.6	52.8	14.3	14.4
CH	60.5	60.2	60.4	60.2
CH2	-	-	62.6	62.0

Ethyl 7-chloro-6-fluoro-1,4-dihydro-1-[(Z)-1-methoxycar-bonyl-2-(4- and 3-pyridyl)vinyl]-4-oxoquinoline-3-carboxylates 6a,b. General procedure. A solution of compound $\mathbf{1 4}$ $(5.0 \mathrm{~g}, 14.6 \mathrm{mmol})$, 4- or 3-pyridinecarbaldehyde $(2.50 \mathrm{~g}, 23.4$ mmol), and 1,8-diazabicyclo[5.4.0]-7-undecene ($1.19 \mathrm{~g}, 7.80$ $\mathrm{mmol})$ in dry dioxane (100 mL) was refluxed with stirring for 10 h . Acetic acid (5 mL) was added to the solution, and the solvent was evaporated in vacuo to give colorless crystals. Recrystallization from dioxane/water afforded colorless needles $\mathbf{6 a}$ or $\mathbf{6 b}$.

Compound $\mathbf{6 a}$ was obtained in 55% yield (3.48 g); mp 226$227^{\circ}$; IR: v $1730 \mathrm{~cm}^{-1}$; ms: m/z $430\left(\mathrm{M}^{+}\right), 432\left(\mathrm{M}^{+}+2\right)$; NMR (deuteriodimethyl sulfoxide): 8.65 ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}$), 8.54 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $2-\mathrm{H}$ and $6-\mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), 8.07 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $7.12(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $3-\mathrm{H}$ and $5-\mathrm{H})$, $4.18(\mathrm{q}$, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClFN}_{2} \mathrm{O}_{5} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$ [15]: C, 57.74; H, 3.85; N, 6.41. Found: C, 57.79; H, 3.81; N, 6.36.

Compound $\mathbf{6} \mathbf{b}$ was obtained in 61% yield $(3.82 \mathrm{~g}) ; \mathrm{mp} 214-$ 215°; IR: v $1735,1720 \mathrm{~cm}^{-1}$; ms: m/z $430\left(\mathrm{M}^{+}\right), 432\left(\mathrm{M}^{+}+\right.$ 2); NMR (deuteriodimethyl sulfoxide): (isomer A) [14] 8.66 ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}$) , $8.29(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), $8.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 7.81(\mathrm{~d}, J=6.0, \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.41$ (ddd, $J=4.0,2.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}$), 7.34 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}$), $8.57-8.52(\mathrm{~m}, 2 \mathrm{H}$, pyridine $2-\mathrm{H}$ and $6-\mathrm{H}$), $4.21(\mathrm{dq}$, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $4.17(\mathrm{dq}, J=11.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$, methylene CH), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.23 (dd, $J=7.0$, $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); (isomer B) [14] $8.60(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.22$ (s, 1 H , vinylic H), 8.08 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $7.73(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.41 (ddd, $J=4.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}), 7.33$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}$), $8.57-8.52$ $(\mathrm{m}, 2 \mathrm{H}$, pyridine $2-\mathrm{H}$ and $6-\mathrm{H}), 4.20(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}$, 1 H , methylene CH), 4.16 (dq, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}). The $5-\mathrm{H}$, pyridine $4-\mathrm{H}$, ester methyl proton signals of the above isomers A and B were observed in the same magnetic field. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClFN}_{2} \mathrm{O}_{5} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ [15]: C, 57.35 ; H, 3.90; N, 6.37. Found: C, 57.39; H, 3.75; N, 6.42.

Methyl 1-[(Z)-1-ethoxycarbonyl-2-(4-, 3-, and 2-pyridyl)-vinyl]-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylates 7a-c. General procedure. A solution of compound $15(5.0 \mathrm{~g}$, 15.6 mmol), 4-, 3-, or 2-pyridinecarbaldehyde ($2.50 \mathrm{~g}, 23.4$ $\mathrm{mmol})$, and 1,8-diazabicyclo[5.4.0]-7-undecene ($1.19 \mathrm{~g}, 7.80$ $\mathrm{mmol})$ in dry dioxane $(100 \mathrm{~mL})$ was refluxed with stirring for 10 h. Acetic acid (5 mL) was added to the solution, and the solvent was evaporated in vacuo to give colorless crystals. Recrystallization from dioxane/water afforded colorless needles $\mathbf{7 a}, 7 \mathbf{b}$, or $7 \mathbf{c}$.

Compound 7a [16] was obtained in 59% yield (3.75 g); mp $226-227^{\circ}$; IR: v $1725 \mathrm{~cm}^{-1}$; ms: m/z $410\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): 8.63 (s, 1H, 2-H), 8.54 (d, $J=6.0 \mathrm{~Hz}$, 2 H , pyridine $2-\mathrm{H}$ and $6-\mathrm{H}$), $8.25(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), 7.92 (dd, $9.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 7.58 (ddd, $9.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), $7.50(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $3-\mathrm{H}$ and $5-\mathrm{H}$), $4.28(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $4.24(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), 4.18 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.22(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.21\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 64.39 ; H, 4.67; N, 6.83. Found: C, 64.39; H, 4.67; N, 6.86 .

Compound 7b was obtained in 49% yield (3.10 g); mp 140$141^{\circ}$; IR: v $1725,1690 \mathrm{~cm}^{-1}$; ms: m/z $410\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): 8.65 (s, 1H, 2-H), 8.55 (d, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}$, pyridine $2-\mathrm{H}$), $8.53(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $6-\mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), $7.92(\mathrm{dd}, 9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.57 (ddd, $J=9.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.50 (dd, $J=9.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.39 (ddd, $J=8.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}), 7.33(\mathrm{dd}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}), 4.28(\mathrm{dq}$, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH$), 4.24(\mathrm{dq}, J=11.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$, methylene CH), $4.22(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), 4.17 (dq, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $1.23\left(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22(\mathrm{dd}, J=7.0,7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{5}: \mathrm{C}, 64.39$; H , 4.67; N, 6.83. Found: C, 64.16; H, 4.67; N, 6.90.

Compound 7c was obtained in 58% yield (3.73 g); mp 166$167^{\circ}$; IR: v $1700 \mathrm{~cm}^{-1}$; ms: m/z $410\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): $8.56(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.27$ (ddd, $J=5.0,1.5$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $6-\mathrm{H}$), 8.24 ($\mathrm{s}, 1 \mathrm{H}$, vinylic H), 7.99 (dd, J $=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 7.83 (ddd, $7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}), 7.69$ (ddd, $J=7.5,1.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $3-\mathrm{H}$), 7.50 (ddd, $J=9.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.41$ (dd, $J=9.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.29 (ddd, $J=7.5,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}), 4.30(\mathrm{dq}, J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), 4.25 (dq, $J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $4.17(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.23 (dd, $J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.22 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 64.39; H, 4.67; N, 6.83. Found: C, 64.00; H, 4.69; N, 6.85.

7-Chloro-6-fluoro-1,4-dihydro-1-[(Z)-1-methoxycarbonyl-2-(4- and 3-pyridyl)vinyl]-4-oxoquinoline-3-carboxylic acids 8a,b. General procedure. A solution of compound $\mathbf{6 a}$ or $\mathbf{6 b}$ $(1.0 \mathrm{~g}, 2.33 \mathrm{mmol})$ in concentrated sulfuric acid (0.4 mL), water (1.0 mL), and acetic acid (40 mL) was refluxed with stirring for 2 h . The solvent was evaporated in vacuo to give an oily product, which was dissolved in ethanol (10 mL) and then neutralized with sodium hydrogen carbonate to afford crystals. The crystals were collected by suction, and then recrystallization from N, N-dimethylformamide/ethanol/water provided yellow needles $\mathbf{8 a}$ or $\mathbf{8 b}$.

Compound 8a was obtained in 87% yield (810 mg); mp 244-245 ; IR: v $1740 \mathrm{~cm}^{-1}$; ms: m/z $402\left(\mathrm{M}^{+}\right), 404\left(\mathrm{M}^{+}+\right.$ 2); NMR (deuteriodimethyl sulfoxide): 14.23 (brs, 1 H , COOH), $9.05,8.90$ [14] ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}$), 8.52 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $2-\mathrm{H}$ and $6-\mathrm{H}$), 8.28 ($\mathrm{s}, 1 \mathrm{H}$, vinylic H), 8.25 (d, $J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.09(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $3-\mathrm{H}$ and $5-\mathrm{H}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClFN}_{2} \mathrm{O}_{5} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}$ [15]: C, 56.16 ; $\mathrm{H}, 3.08$; N , 6.89. Found: C, 56.08 ; H, 3.07; N, 6.93.

Compound 8b was obtained in 51% yield (470 mg); mp 216-217 ; IR: v $1725 \mathrm{~cm}^{-1}$; ms: m/z $402\left(\mathrm{M}^{+}\right), 404\left(\mathrm{M}^{+}+\right.$ 2); NMR (deuteriodimethyl sulfoxide): 14.22 (brs, 1 H , $\mathrm{COOH}), 9.06(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}$, pyridine $2-\mathrm{H}), 8.55$ (dd, $J=3.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $6-\mathrm{H}$), $8.34(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), 8.26 (dd, $9.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.08$ (dd, $J=4.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 7.34(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}$), 7.30 (dd, $J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClFN}_{2} \mathrm{O}_{5} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$ [15]: C, $55.83 ; \mathrm{H}$, 3.12; N, 6.85. Found: C, 55.83; H, 3.11; N, 6.96.

1-[(Z)-1-Ethoxycarbonyl-2-(4-, 3-, and 2-pyridyl)vinyl]-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids 9a-c. General procedure. A solution of compound 7a, 7b, or 7c $(1.0 \mathrm{~g}, 2.44 \mathrm{mmol})$ in concentrated sulfuric acid $(0.4 \mathrm{~mL})$,
water (1.0 mL), and acetic acid (40 mL) was refluxed with stirring for 2 h . The solvent was evaporated in vacuo to give an oily product, which was dissolved in ethanol (10 mL) and then neutralized with sodium hydrogen carbonate to afford crystals. The crystals were collected by suction, and then recrystallization from N, N-dimethylformamide/ethanol/water provided yellow needles $\mathbf{9 a}, \mathbf{9 b}$, or $\mathbf{9 c}$.

Compound 9a [16] was obtained in 67% yield (620 mg); $\mathrm{mp} 228-229^{\circ}$; IR: v $1740,1720 \mathrm{~cm}^{-1}$; ms: m/z $382\left(\mathrm{M}^{+}\right.$); NMR (deuteriodimethyl sulfoxide): 14.45 (brs, $1 \mathrm{H}, \mathrm{COOH}$), $9.06(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.51(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $2-\mathrm{H}$ and $6-\mathrm{H}), 8.30$ (s, 1H, vinylic H), 8.09 (ddd, $9.0,8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.77$ (dd, 10.0, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 7.74 (dd, $J=9.0,3.5$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $3-\mathrm{H}$ and $5-\mathrm{H})$, $4.28(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $4.24(\mathrm{dq}, J=$ $11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), 1.21 (dd, $J=7.0,7.0 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{5}$: $\mathrm{C}, 62.83 ; \mathrm{H}, 3.95$; N, 7.33. Found: C, 62.66; H, 3.98; N, 7.42.
Compound 9b was obtained in 64% yield (600 mg); mp 168-169 ; IR: v $1725,1620 \mathrm{~cm}^{-1}$; ms: m/z $382\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): 14.48 (brs, $1 \mathrm{H}, \mathrm{COOH}$), 9.07 (s, $1 \mathrm{H}, 2-\mathrm{H}), 8.56(\mathrm{dd}, J=1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $2-\mathrm{H}), 8.52$ (dd, $J=4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}$), $8.35(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), 8.09 (ddd, $8.5,8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.74(J=8.5,6.0$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}), 7.28[(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, (dd, $J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), pyridine $4-\mathrm{H}$ and $6-\mathrm{H}], 4.28(\mathrm{dq}, J$ $=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH$), 4.23(\mathrm{dq}, J=11.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$, methylene CH), $1.22\left(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 62.83; H, 3.95; N, 7.33. Found: C, 62.57; H, 3.95; N, 7.36.

Compound 9c was obtained in 70% yield (652 mg); mp 200-201 ; IR: v $1720,1620 \mathrm{~cm}^{-1}$; ms: m/z $382\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): 14.75 (s, $1 \mathrm{H}, \mathrm{COOH}$), 8.99 (s, $1 \mathrm{H}, 2-\mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), 8.16 (dd, $J=4.5,2.5 \mathrm{~Hz}$, 1 H , pyridine $6-\mathrm{H}$), 8.06 (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 7.84 (ddd, $J=8.0,7.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}), 7.80(\mathrm{dd}, J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $3-\mathrm{H}$), 7.70 (ddd, $J=7.0,7.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.66 (dd, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.27$ (ddd, $J=7.0,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}), 4.30(\mathrm{dq}, J=11.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $4.25(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), 1.23 (dd, $J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 61.86; H, 4.07; N, 7.21. Found: C, 62.06; H, 3.98; N, 7.28.
1-[(Z)-1-Carboxy-2-(4- and 3-pyridyl)vinyl]-7-chloro-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids 10a,b. General procedure. A solution of potassium hydroxide (290 $\mathrm{mg}, 5.13 \mathrm{mmol})$ in water (2 mL) was added to a solution of compound $\mathbf{6 a}$ or $\mathbf{6 b}(1.0 \mathrm{~g}, 2.33 \mathrm{mmol})$ in ethanol (40 mL), and the solution was refluxed for 2 h to precipitate crystals. After cooling of the reaction mixture and then neutralization with hydrochloric acid (1 mol solution), the solvent was evaporated in vacuo to afford crystals, which were collected by suction. Recrystallization from N, N-dimethylformamide/ ethanol/water gave yellow needles.

Compound 10a was obtained in 89% yield (800 mg); mp 285-286 ; IR: v $1730 \mathrm{~cm}^{-1}$; ms: m/z $388\left(\mathrm{M}^{+}\right), 390\left(\mathrm{M}^{+}+\right.$ 2); NMR (deuteriodimethyl sulfoxide): 14.28 (brs, 1 H , $\mathrm{COOH}), 9.01(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.51(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $2-\mathrm{H}$ and $6-\mathrm{H}), 8.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), $8.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.93$ (s, formyl H of N, N-dimethylformamide), 7.10 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine
$3-\mathrm{H}$ and $5-\mathrm{H}$), 2.81 ($\mathrm{s}, \mathrm{CH}_{3}$ of N, N-dimethylformamide), 2.71 (s, CH_{3} of N, N-dimethylformamide). One of two COOH proton signals was not observed presumably due to flattening. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClFN}_{2} \mathrm{O}_{5} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O} \cdot 2 / 3 \mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}$ [15]: C, 56.16; H, 3.08; N, 6.89. Found: C, 56.08; H, 3.07; N, 6.93.

Compound 10b was obtained in 95% yield (860 mg); mp 284-285 ; IR: v $1720 \mathrm{~cm}^{-1}$; ms: m/z $388\left(\mathrm{M}^{+}\right), 390\left(\mathrm{M}^{+}+\right.$ 2); NMR (deuteriodimethyl sulfoxide): 14.29 (brs, 1 H , $\mathrm{COOH}), 9.02(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $2-\mathrm{H}), 8.52(\mathrm{dd}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $6-\mathrm{H}), 8.27(\mathrm{~s}$, 1 H , vinylic H), $8.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.99(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.33 (ddd, $J=8.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}), 7.28(\mathrm{dd}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H})$. One of two COOH proton signals was not observed presumably due to flattening. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClFN}_{2} \mathrm{O}_{5}: \mathrm{C}, 55.61 ; \mathrm{H}$, 2.59; N, 7.21. Found: C, 55.33; H, 2.70; N, 7.23.

1-[(Z)-1-Carboxy-2-(4-, 3-, and 2-pyridyl)vinyl]-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids 11a-c. General procedure. A solution of potassium hydroxide (300 mg , $5.37 \mathrm{mmol})$ in water (2 mL) was added to a solution of compound $7 \mathbf{a}, 7 \mathbf{b}$, or $7 \mathbf{c}(1.0 \mathrm{~g}, 2.44 \mathrm{mmol})$ in ethanol $(40 \mathrm{~mL})$, and the solution was refluxed for 2 h to precipitate crystals. After cooling of the reaction mixture and then neutralization with hydrochloric acid (1 mol solution), the solvent was evaporated in vacuo to afford crystals, which were collected by suction. Recrystallization from ethanol/water gave analytically pure sample.

Compound 11a was obtained in 58% yield (500 mg) as yellow needles; $\mathrm{mp} 270-271^{\circ}$; IR: v $1720 \mathrm{~cm}^{-1}$; ms: m/z 354 $\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): 14.80 (brs [17], $\mathrm{COOH}), 14.51$ (brs, $1 \mathrm{H}, \mathrm{COOH}$), 9.11, 9.03 [14] (s, 1H, 2-H), $8.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $2-\mathrm{H}$ and $6-\mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), 8.08 (dd, $8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 7.76 (ddd, $8.5,8.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.73 (dd, $J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.06 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $3-\mathrm{H}$ and $5-\mathrm{H}$). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ [15]: C, 58.07; H, 3.52; N, 7.52. Found: C, 58.34; H, 3.48; N, 7.40.

Compound 11b was obtained in 73% yield (630 mg) as colorless needles; mp $246-247^{\circ}$; IR: v $1710 \mathrm{~cm}^{-1}$; ms: m/z 354 $\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): 14.53 (brs, 1 H , $\mathrm{COOH}), 9.04(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $2-\mathrm{H}), 8.51(\mathrm{dd}, J=4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $6-\mathrm{H}), 8.31(\mathrm{~s}$, 1 H , vinylic H), 8.09 (ddd, $J=8.5,8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.75 (dd, $J=7.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.74(J=8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), 7.29 (ddd, $J=8.0,2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}$), 7.28 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H}$). One of two COOH proton signals was not observed presumably due to flattening. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{5} \cdot 2 / 5 \mathrm{H}_{2} \mathrm{O}$ [15]: C, 59.57; $\mathrm{H}, 3.26$; N, 7.81. Found: C, 59.47; H, 3.52; N, 7.67.

Compound 11c was obtained in 56% yield $(480 \mathrm{mg})$ as colorless needles; $\mathrm{mp} 242-243^{\circ}$; IR: v $1715 \mathrm{~cm}^{-1}$; ms: m/z 354 $\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): $14.80(\mathrm{~s}, 1 \mathrm{H}$, COOH), 14.05 (brs, $1 \mathrm{H}, \mathrm{COOH}$), 8.95 ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}$), 8.27 (s , 1 H , vinylic H), 8.17 (ddd, $J=4.5,2.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $6-\mathrm{H}), 8.06$ (dd, $J=8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.84$ (ddd, $J=8.5$, $8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $4-\mathrm{H}$), 7.76 (dd, $J=8.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $3-\mathrm{H}$), 7.70 (ddd, $J=9.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.66$ (dd, $J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.28(\mathrm{dd}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $5-\mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 61.02 ; H , 3.13; N, 7.91. Found: C, 60.72 ; H, 3.30; N, 7.76.

Ethyl 1-[(Z)-1-ethoxycarbonyl-2-(2-furyl, 2-thienyl, and 3-thienyl)vinyl]-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylates 16-18. General procedure. A solution of compound $15(2.0 \mathrm{~g}, 6.23 \mathrm{mmol})$, [furfural ($898 \mathrm{mg}, 9.35 \mathrm{mmol}$), thio-phene-2-carbaldehyde ($1.74 \mathrm{~g}, 15.6 \mathrm{mmol}$), or thiophene-3-carbaldehyde ($1.74 \mathrm{~g}, 15.6 \mathrm{mmol}$)], 1,8-diazabicyclo[5.4.0]-7undecene (0.3 mL) in dry N, N-dimethylformamide (30 mL) was refluxed for 2 h with stirring. Evaporation of the solvent in vacuo gave an oily substance, which was crystallized from ethanol/water to afford yellow needles $\mathbf{1 6}, \mathbf{1 7}$, or 18 .

Compound 16 was obtained in 59% yield (1.46 g); mp 154$155^{\circ}$; IR: v $1715,1700 \mathrm{~cm}^{-1}$; ms: m/z 399 (M^{+}); NMR (deuteriodimethyl sulfoxide): $8.61(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), $7.92(\mathrm{dd}, 8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, furan $5-\mathrm{H}$), 7.55 (ddd, $J=9.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.42$ (dd, $J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.00(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, furan $3-\mathrm{H}), 6.60(\mathrm{dd}, J=3.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, furan $4-\mathrm{H}), 4.26(\mathrm{dq}, J=$ $10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $4.21(\mathrm{dq}, J=10.0,6.5 \mathrm{~Hz}$, 1 H , methylene CH), $4.20\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24(\mathrm{dd}$, $\left.J=6.5,6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{6}$: C, 63.16; $\mathrm{H}, 4.54 ; \mathrm{N}, 3.51$. Found: C, 63.16; H, 4.56; N, 3.68.

Compound $\mathbf{1 7}$ was obtained in 60% yield (1.55 g); mp 182$183^{\circ}$; IR: v $1720 \mathrm{~cm}^{-1}$; ms: m/z $415\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): $8.59,8.55$ [14] (s, $1 \mathrm{H}, 2-\mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}$, vinylic H), $7.94(\mathrm{dd}, 9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.82(\mathrm{~d}, J=3.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene $3-\mathrm{H}$), 7.78 (dd, $J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene $5-\mathrm{H}$), 7.55 (ddd, $J=9.5,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.43$ (dd, $J=9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.16(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene $4-\mathrm{H}$), 4.26 (dq, $J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene $\mathrm{CH}), 4.20\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.19(\mathrm{dq}, J=10.5,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$, methylene CH), 1.24 (dd, $J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.22\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{5} \mathrm{~S}$: C, 60.71; H, 4.37; N, 3.37. Found: C, 60.79; H, 4.31; N, 3.74.

Compound $\mathbf{1 8}$ was obtained in 51% yield (1.31 g); mp 180181 ${ }^{\circ}$; IR: v 1710, $1682 \mathrm{~cm}^{-1}$; ms: m/z $415\left(\mathrm{M}^{+}\right)$; NMR (deuteriodimethyl sulfoxide): 8.59 (s, 1H, 2-H), 8.29 (dd, $J=0.5$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$, vinylic H), 8.04 (ddd, $J=3.0,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene $2-\mathrm{H}), 7.94(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.56$ (ddd, $J=9.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.52 (dd, $J=5.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}$, thiophene $5-\mathrm{H}), 7.44(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, 6.45 (ddd, $J=5.0,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene $4-\mathrm{H}$), 4.25 (dq, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.18 (dq, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, methylene CH), $1.24\left(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{5} \mathrm{~S}: \mathrm{C}, 60.71 ; \mathrm{H}, 4.37$; N, 3.37. Found: C, 60.68 ; H, 4.40; N, 3.54 .

Conversion of compound 7a into compound 13. A solution of compound $7 \mathbf{a}(2.0 \mathrm{~g}, 4.88 \mathrm{mmol})$, hydrazine hydrate ($700 \mathrm{mg}, 14.0 \mathrm{mmol}$) in dioxane (36 mL)/ N, N-dimethylformamide (24 mL) was refluxed for 2 h with stirring to precipitate colorless needles. After cooling the reaction mixture, crystals were collected by suction and washed with ethanol to give an analytically pure sample $\mathbf{1 3}(460 \mathrm{mg}, 40 \%)$.

REFERENCES AND NOTES

[1] Kurasawa, Y.; Tsuruoka, A.; Rikiishi, N.; Fujiwara, N.; Okamoto, Y.; Kim, H. S. J Heterocycl Chem 2000, 37, 791.
[2] Kurasawa, Y.; Sakurai, K.; Kajiwara, S.; Harada, K.; Okamoto, Y.; Kim, H. S. J Heterocycl Chem 2000, 37, 1257.
[3] Kurasawa, Y.; Ohshima, S.; Kishimoto, Y.; Ogura, M.; Okamoto, Y.; Kim, H. S. Heterocycles 2001, 54, 359.
[4] Kurasawa, Y.; Matsuzaki, I.; Satoh, W.; Okamoto, Y.; Kim, H. S. Heterocycles 2002, 56, 291.
[5] Kurasawa, Y.; Takizawa, J.; Maesaki, Y.; Kawase, A.; Okamoto, Y.; Kim, H. S. Heterocycles 2002, 58, 359.
[6] Kurasawa, Y.; Satoh, W.; Matsuzaki, I.; Maesaki, Y.; Okamoto, Y.; Kim, H. S. J Heterocycl Chem 2003, 40, 837.
[7] Kurasawa, Y.; Kaji, E.; Okamoto, Y.; Kim, H. S. J Heterocycl Chem 2005, 42, 249.
[8] Kurasawa, Y.; Kawase, A.; Takizawa, J.; Maesaki, Y.; Kaji, E.; Okamoto, Y.; Kim, H. S. J Heterocycl Chem 2005, 42, 551.
[9] Kurasawa, Y.; Nakamura, M.; Ashida, H.; Masuda, M.; Kaji, E.; Okamoto, Y.; Kim, H. S. J Heterocycl Chem 2007, 44, 1231.
[10] Wentland, M. P.; Perni, R. B.; Dorff, P. H.; Brundage, R. P.; Castaldi, M. J.; Bailey, T. R.; Carabateas, P. M.; Bacon, E. R.; Young, D. C.; Woods, M. G.; Rosi, D.; Drozd, M. L.; Kullnig, R. K.; Dutko, F. J. J Med Chem 1993, 36, 1580.
[11] Matsumoto, J.; Minami, S. J Med Chem 1968, 11, 160.
[12] Sheu, J.-Y.; Chen, Y.-L.; Fang, K.-C.; Wang, T.-C.; Pen, C.-F.; Tzeng, C.-C. J Heterocycl Chem 1998, 35, 955.
[13] (a) Jensen, J. B.; Trager, W. J Parasitol 1997, 63, 883; (b) Desjardins, R. E.; Canfield, C. J.; Haynes, D. M.; Chulay, J. D. Antimicrob Agents Chemother 1979, 16, 710; (c) Trager, W.; Jensen, J. B. Science 1976, 193, 673; (d) Kim, H. S.; Shibata, Y.; Tshichiya, K.; Masuyama, A.; Nokima, M. J Med Chem 1999, 42, 2604.
[14] Conformational analysis might be necessary for the clarification of such NMR spectral data.
[15] Compounds 6a,b, 8a,b, 10a, and 11a,b were found to absorb moisture while the procedures of the elemental analyses.
[16] The NOE spectral data (Table 2) showed that compounds 7 a and 9 a were a mixture of the E - and Z-isomers.
[17] The integral curve of the COOH proton signal was less than 1 H size presumably due to flattening by moisture in the sample tube.

[^0]: ${ }^{\mathrm{a}}$ NOE (\%) Observed.

